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Denote by xn, k(a, b) and xn, k(l)=xn, k(l−1/2, l−1/2) the zeros, in decreasing
order, of the Jacobi polynomial P (a, b)n (x) and of the ultraspherical (Gegenbauer)
polynomial Cln(x), respectively. The monotonicity of xn, k(a, b) as functions of a
and b, a, b > −1, is investigated. Necessary conditions such that the zeros of
P (a, b)n (x) are smaller (greater) than the zeros of P (a, b)n (x) are provided. A. Markov
proved that xn, k(a, b) < xn, k(a, b) (xn, k(a, b) > xn, k(a, b)) for every n ¥N and each
k, 1 [ k [ n if a > a and b < b (a < a and b > b). We prove the converse statement
of Markov’s theorem. The question of how large the function fn(l) could be such
that the products fn(l) xn, k(l), k=1, ..., [n/2] are increasing functions of l, for
l > −1/2, is also discussed. Elbert and Siafarikas proved that fn(l)=(l+(2n2+1)/
(4n+2))1/2 obeys this property. We establish the sharpness of their result. © 2002

Elsevier Science (USA)

1. INTRODUCTION AND STATEMENT OF RESULTS

The behaviour of the zeros xn, k(a, b), k=1, ..., n, of the Jacobi polynomial
P (a, b)n (x), arranged in decreasing order, as functions of the parameters a and
b, a, b > −1, has been of permanent interest because of their nice electrostatic



interpretation and of their important role as nodes of Gaussian quadrature
formulae, just to mention a few. In particular, the monotonicity properties
of the positive zeros xn, k(l), k=1, ..., [n/2], of the ultraspherical poly-
nomial Cln(x), for l > −1/2, have been under intensive investigation. In
order to do this, powerful analytic and discrete techniques which provide
sufficient conditions for monotonicity have been developed. Among others
we mention Sturm’s theorem [18, Theorem 1.82.1] and its integral version
[5], A. Markov’s theorem [15; 18, Theorem 6.12.1] and the Hellmann–
Feynman theorem [9, 10, 12]. However, these methods hardly indicate to
what extent the corresponding results are sharp.
We are interested in two important questions.

1. Given a pair (a, b), a, b > −1, find all (a, b), a, b > −1, for which
the zeros of P (a, b)n (x) are smaller (greater) than the zeros of P (a, b)n (x). In
other words, the problem is to determine the pairs (a, b) such that the
inequalities xn, k(a, b) < xn, k(a, b) (or xn, k(a, b) > xn, k(a, b)) hold for every
positive integer n and for any k, 1 [ k [ n. A result of A. Markov [15; 18,
Theorem 6.21.1] states that the zeros of P (a, b)n (x) are decreasing functions
of a and increasing functions of b. Equivalently, the inequalities xn, k(a, b) <
xn, k(a, b), n=2, 3, ..., k=1, ..., n, hold for a > a, b < b, and xn, k(a, b) >
xn, k(a, b), n=2, 3, ..., k=1, ..., n, for a < a, b > b. To the best of our
knowledge nothing was known about the mutual location of xn, k(a, b) and
xn, k(a, b) when (a, b) belongs to the sectors {a > a, b > b} and {a < a,
b < b} and this is the first question we are interested in.
In the recent paper [4], we proved the inequalities xn, 1(a, b) < xn, 1(a, b)
for the largest zeros of P (a, b)n (x) and P (a, b)n (x) in the following cases

b > a, a > a, b−b < a−a,

and

b < a, a > a, a+b > 0, (a+1)(b−b) < (b+1)(a−a), (a, b) ¨ D,

where D=D(a, b) is the triangle with vertices at (a, b), (2a−b, b), and
(2a+1, 2b+1).
2. Stieltjes [17] proved that the positive zeros of Cln(x) decrease

when l increases. The problem of finding the extremal function fn(l)
which forces the products fn(l) xn, k(l), k=1, ..., [n/2], to increase has
been discussed in [1, 3, 6, 8, 13]. Recently Elbert and Siafarikas [6]
proved that [l+(2n2+1)/(4n+2)]1/2 xn, k(l), k=1, ..., [n/2], are
increasing functions of l, for l > −1/2, thus extending a result of Ahmed,
Muldoon, and Spigler [1] and proving a conjecture of Ismail, Letessier,
and Askey [10, 11].
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It is interesting to know to what extent the multiplier function fn(l)=
(l+(2n2+1)/(4n+2))1/2 is close to the extremal one. This is the second
question we are interested in. There are strong indications that fn(l)
should be of the form fn(l)=(l+cn)1/2, where cn depends only on n. We
refer to the introduction of [6] for some of the arguments in support of
this statement. On the other hand, as it was pointed out in [3], the best
possible function fn(l) that forces fn(l) xn, k(l), k=1, ..., [n/2], to increase
is the one for which f −n(l)/fn(l) is minimal. Thus fn(l)=(l+cn)

1/2 is the
extremal function for this problem if cn is the largest possible.

In this paper we employ the classical Routh–Hurwitz stability criterion
in order to answer the above two questions. Our results read as follows.

Theorem 1.1. Let (a, b), a, b > −1, be a pair of parameters and n be a
positive integer.
If xn, k(a, b) < xn, k(a, b) for every k, k=1, ..., n, then

b <min 3b+n+b
n+a

(a−a), b+
n+b
1+a

(a−a)4 . (1)

if xn, k(a, b) > xn, k(a, b) for every k, k=1, ..., n, then

b >max 3b+n+b
n+a

(a−a), b+
n+b
1+a

(a−a)4 . (2)

Let us fix the point (a, b) and consider the regions in the (a, b)-plane
where (1) and (2) hold. Inequality (1) holds when (a, b) belongs to the sector
below the lines l1 and l2, where l1 passes through (a, b) and (−n, −n), and
l2 passes through (a, b) and (−1, −n). Inequality (2) holds when (a, b) is in
the sector above these lines.

Theorem 1.2. Let (a, b), a, b > −1, be a fixed pair of parameters. Then
the inequalities xn, k(a, b) < xn, k(a, b) hold for every positive integer n and for
each k, k=1, ..., n, if and only if

a > a and b < b. (3)

The inequalities xn, k(a, b) > xn, k(a, b) hold for every n ¥N and for each k,
k=1, ..., n, if and only if

a < a and b > b. (4)

Markov’s theorem asserts that all the zeros of all the polynomials P (a, b)n (x)
precede the corresponding zeros of P (a, b)n (x) if the vector (a, b)−(a, b) is in
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the fourth quadrant and the opposite inequalities xn, k(a, b) > xn, k(a, b)
hold for all admissible n and k if the vector (a, b)−(a, b) is in the second
quadrant. In this paper we prove that the inequalities (3) are necessary
conditions in order that all the zeros of all the polynomials P (a, b)n (x)
precede the corresponding zeros of P (a, b)n (x) and, similarly, (a, b) neces-
sarily must belong to the sector (4) provided xn, k(a, b) > xn, k(a, b) for every
n ¥N and each k, 1 [ k [ n.
Our contribution to the second problems is as follows:

Theorem 1.3. Let n be a positive integer. If fn(l) is positive and
fn(l) xn, k(l), k=1, ..., [n/2], are increasing functions of l for l > −1/2,
then

f −2n(l)
f2n(l)

>
1

2(n+l)
(5)

and

f −2n+1(l)
f2n+1(l)

>
1

2(n+l+1)
. (6)

Moreover, if (l+cn)1/2 xn, k(l), k=1, ..., [n/2], are increasing functions
of l for l > −1/2, then

c2n <
4n2+n+1
4n+2

(7)

and

c2n+1 <
4n2+7n+9
4n+6

. (8)

Inequalities (5) and (6) provide lower bounds for the logarithmic derivative
of the extremal multiplier function for the problem under discussion.
Obviously (7) and (8) are equivalent to

c2n < n−
1
4
+

3
2(4n+2)

and

c2n+1 < n+
1
4
+

15
4(2n+3)

.
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On the other hand, the above mentioned result of Elbert and Siafarikas
states that the products fn(l) xn, k(l), k=1, ..., [n/2], increase with l if

fn(l)=(l+(2n2+1)/(4n+2))1/2 (9)

and this can be rewritten as

f22n(l)=l+n−
1
4
+

3
4(4n+1)

and

f22n+1(l)=l+n+
1
4
+

3
4(4n+3)

.

Thus Theorem 1.3 shows that the multiplier (9) is asymptotically sharp.

2. THE ROUTH–HURWITZ THEOREM AND MONOTONICITY OF
ZEROS OF ORTHOGONAL POLYNOMIALS

Let {pn(x; y)} be a sequence of parametric orthogonal polynomials. We
shall apply the stability criterion of Routh–Hurwitz to obtain necessary
and sufficient conditions for monotonicity of the zeros of pn(x; y) as func-
tions of the parameter y. We refer to Gantmacher [7, Chap. 15] and
Marden [14, Chap. 9] for comprehensive information on the stability
theory. Here we only provide the necessary definitions and formulate the
Hurwitz theorem. With every polynomial

f(z)=fnzn+fn−1zn−1+fn−2zn−2+fn−3zn−3+·· · , fn ] 0,

we associate a Hurwitz matrix which is formed as follows. Set f−1=
f−2=·· ·=0 and construct the two line block

Rfn−1 fn−3 · · ·
fn fn−2 · · ·

S ,

where the first line contains fn−2k−1, k=0, 1, ..., and the second line is
composed by the coefficients fn−2k, k=0, 1, ..., of f(z). Then the Hurwitz
matrix H(f) of f(z) is composed by the above block in its first two lines,
the next two lines ofH(f) contain the same block shifted one position to the
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right, the fifth and the sixth lines contain this block shifted two positions to
the right, and so forth. Thus

H(f)=R
fn−1 fn−3 fn−5 · · · 0
fn fn−2 fn−4 · · · 0
0 fn−1 fn−3 · · · 0
0 fn fn−2 · · · 0
· · · · · · ·

S .
The polynomialf(z)=fnzn+fn−1zn−1+·· ·+f0 with real coefficientsfj and
with positive leading coefficient fn is called Hurwitz or stable if all its zeros
have negative real parts. The following is the celebrated Hurwitz theorem
which is sometimes called the Routh–Hurwitz criterion.

Theorem 2.A. The polynomial f(z) is stable if and only if the first n
principal minors of the corresponding Hurwitz matrix H(f) are positive.

Another classical result we need is the Theorem of Hermite–Biehler (see
Obrechkoff [16]) which reads as follows.

Theorem 2.B. The real polynomials U(z) and V(z), whose degrees are
equal or differ by one, have only real and interlacing zeros if and only if all
the zeros of the polynomial

F(z)=U(z)+iV(z)

belong to one and the same half-plane with respect to the real line.

As an immediate consequence of the latter two theorems we obtain a
necessary and sufficient condition such that the zeros of two real polynomials
are real, negative, and interlace. In order to facilitate the formulation of the
result and our further discussion we shall say that the polynomials h(z) and
g(z) of degree m form a positive pair if their leading coefficients are posi-
tive and their zeros x1, ..., xm and y1, ..., ym are distinct, real, negative, and
interlace in the following way:

ym < xm < ym−1 < xm−1 < · · · < y1 < x1.

We shall succinctly denote the latter by ȳO x̄.

Theorem 2.C. The polynomial f(z)=h(z2)+zg(z2) is a Hurwitz poly-
nomial if and only if h(z) and g(z) form a positive pair.

This result appears as Theorem 13 in [7, p. 228].
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Consider the sequence {pn(x; y)} of parametric polynomials which are
orthogonal on the interval x ¥ (c, d) when y ¥ (p, q) and whose coefficients
are continuous functions of y. Suppose the leading coefficients of pn(x; y)
are positive. We shall denote by zk(y),

c < zn(y) < zn−1(y) < · · · < z1(y) < d,

the zeros of pn(x; y) arranged in decreasing order. Let

pn(x; y)=a0(y)+a1(y)(x−d)+· · ·+an(y)(x−d)n, an(y) > 0, (10)

be the Taylor expansion of pn(x; y) at d. Since the zeros zk(y), k=1, ..., n
of pn(x; y) are distinct and belong to (c, d), then all the coefficients aj(y),
j=0, ..., n, are positive. Let qn(x; y) be the polynomial

qn(x; y)=a0(y)+a1(y) x+· · ·+an(y) xn,

and

q̃n(x; y)=a0(y) xn+·· ·+a1(y) x+an(y)

be its reciprocal. Denote by H(pn ; y1, y2) the Hurwitz matrix associated
with the polynomial

f2n+1(x; y1, y2) :=qn(x2 ; y1)+xqn(x2 ; y2).

We have

H(pn; y1, y2)=R
an(y1) an−1(y1) an−2(y1) · · · 0
an(y2) an−1(y2) an−2(y2) · · · 0
0 an(y1) an−1(y1) · · · 0
0 an(y2) an−1(y2) · · · 0
· · · · · · ·

S .
Similarly, H̃(pn; y1, y2) denotes the Hurwitz matrix associated with

fg
2n+1(x; y1, y2) :=q̃n(x

2 ; y1)+xq̃n(x2 ; y2).

Thus

H̃(pn; y1, y2)=R
a0(y1) a1(y1) a2(y1) · · · 0
a0(y2) a1(y2) a2(y2) · · · 0
0 a0(y1) a1(y1) · · · 0
0 a0(y2) a1(y2) · · · 0
· · · · · · ·

S .
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For any j, 1 [ j [ 2n+1, denote by Dj(pn; y1, y2) and D̃j(pn; y1, y2) the jth
principal minor of H(pn; y1, y2) and H̃(pn; y1, y2), respectively. For the first
few j we have

D1(pn; y1, y2)=an(y1), D2(pn; y1, y2)= :an(y1) an−1(y1)an(y2) an−1(y2)
: ,

D3(pn; y1, y2)= :
an(y1) an−1(y1) an−2(y1)
an(y2) an−1(y2) an−2(y2)
0 an(y1) an−1(y1)

: ,

D̃1(pn; y1, y2)=a0(y1), D̃2(pn; y1, y2)= :a0(y1) a1(y1)a0(y2) a1(y2)
: ,

D̃3(pn; y1, y2)= :
a0(y1) a1(y1) a2(y1)
a0(y2) a1(y2) a2(y2)
0 a0(y1) a1(y1)

: .
Now we are ready to formulate the principal results in this section.

Theorem 2.1. Let the coefficients ak(y) in the representation (10) of the
parametric orthogonal polynomial pn(x; y) be continuous functions of y. Then :

(i) The inequalities

zk(y2) < zk(y1), k=1, ..., n, (11)

hold for any y2 in a sufficiently small neighbourhood of y1 if and only if
Dj(pn, y1, y2) > 0 for j=1, ..., 2n+1;
(ii) The inequalities

zk(y1) < zk(y2), k=1, ..., n, (12)

hold for any y2 in a sufficiently small neighborhood of y1 if and only if
D̃j(pn, y1, y2) > 0 for j=1, ..., 2n+1.

Proof. First we prove statement (i). Since pn(x; y) are orthogonal in
(c, d), then the zeros of qn(x; y) are negative and distinct. On the other
hand, these zeros are continuous functions of the parameter y because the
coefficients depend continuously on y. Then the zeros of qn(x; y2) precede
the zeros of qn(x; y1), where |y1−y2 | < e with a sufficiently small e if and
only if the polynomials qn(x; y1) and qn(x; y2) form a positive pair. Now
the statement of the theorem follows from Theorems 2.A and 2.C.
In order to prove (ii) we need to observe that h(z) and g(z) form a positive
pair if and only if zmg(1/z) and zmh(1/z) do.
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Remark. We can formulate various results similar to Theorem 2.1. For
example, sequences of orthogonal polynomials whose coefficients depend
continuously on many parameters can be considered. Then y is understood
to be a vector. Theorem 2.1 can be modified also for polynomials orthogonal
on a semi-infinite line or to orthogonal polynomials with respect to an even
weight function on a symmetric with respect to the origin interval. This is
done by a linear or quadratic transformation. In particular, in the latter
case the sequence {pn(x; y)} is reduced to two sequence of orthogonal
polynomials through the simple procedure described in Section 8 of the
first chapter of Chihara’s book [2]. We omit the details.

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.1. Weuse the representation of the Jacobi polynomial
in terms of terminating hypergeometric function,

P (a, b)n (x)=
(a+1)n
n! 2F1 1−n, n+a+b+1; a+1;

1−x
2
2 .

Here (a)k denotes the Pochhammer symbol. Then by the linear transfor-
mation y=(x−1)/2 we obtain the polynomial

q (a, b)n (y)=C
n

k=0

1n
k
2 (n+a+b+1)k

(a+1)k
yk

whose zeros are (xk(a, b)−1)/2. Similarly, the zeros of

q (a, b)n (y)=C
n

k=0

1n
k
2 (n+a+b+1)k

(a+1)k
yk

are (xk(a, b)−1)/2.
The (2n+1)×(2n+1) matrix H2n+1(a, b ; a, b) is defined as follows. Its
only nonzero elements are

h1, j=1
n
j−1
2 (n+a+b+1)n+1−j

(a+1)n+1−j
, j=1, ..., n,

h2, j=1
n
j−1
2 (n+a+b+1)n+1−j

(a+1)n+1−j
, j=1, ..., n,

and

h2k+1, j+k=h1, j, h2k+2, j+k=h2, j.
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In other words, H2n+1(a, b ; a, b) is the Hurwitz matrix associated with the
polynomial

f2n+1(y)=q
(a, b)
n (y2)+yq(a, b)n (y2).

Suppose (a, b) is in a sufficiently small neighborhood of (a, b). Then, by
Theorem 2.1, the zeros of P (a, b)n (x) precede the one of P (a, b)n (x) if and only
if all the principal minors Dj(a, b ; a, b) of H2n+1(a, b ; a, b) are positive. In
particular,

D2(a, b ; a, b)=n
(n+a+b+1)n−1
(a+1)n−1

(n+a+b+1)n−1
(a+1)n−1

×12n+a+b
a+n

−
2n+a+b
a+n
2

must be positive. This is equivalent to the inequality

b−b <
n+b
n+a

(a−a).

In other words, (a, b) must lie in the half-plane below the line which passes
through the points (a, b) and (−n, −n).
Observe that D2(a, b ; a, b)=−D2(a, b; a, b). Hence, if, for (a, b) close to
(a, b), the zeros of P (a, b)n (x) precede the one of P (a, b)n (x), then (a, b) must
belong to the opposite half-plane.
Now let H̃2n+1(a, b ; a, b) denote the (2n+1)×(2n+1) Hurwitz matrix
associated with

fg
2n+1(y)=q̃

(a, b)
n (y2)+yq̃ (a, b)n (y2).

The 2×2 principal minor of H̃2n+1(a, b ; a, b) is

D̃2(a, b, a, b)=n 1
n+a+b
a+1

−
n+a+b
a+1
2 .

Then Theorem 2.1 implies that if (a, b) is sufficiently close to (a, b) and
xn, k(a, b) < xn, k(a, b) for k=l, ..., n, then, D̃2(a, b ; a, b) must be positive.
This is equivalent to

b−b >
n+b
a+1

(a−a).

The latter means that (a, b) must lie in the half-plane above the line which
passes through the points (a, b) and (−1, −n).
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The argument D̃2(a, b ; a, b)=−D2(a, b; a, b) implies that if the inequalities
xn, k(a, b) < xn, k(a, b) hold for all the zeros of P

(a, b)
n (x) and P(a, b)n (x) when

(a, b) is close to (a, b), then (a, b) must lie in the half-plane below the line
through (a, b) and (−1, −n). This completes the proof of Theorem1.1.
In order to prove Theorem 1.2 we need to formulate an immediate conse-
quence of Theorem 1.1. Considering the intersections of the sectors (1) and (2),
when n runs over the positive integers, we immediately obtain:

Corollary 3.1. Let a, b > −1 be any fixed parameters.

(i) If a > b and the inequalities xn, k(a, b) < xn, k(a, b) hold for every
positive integer n and for each k, k=1, ..., n, then

a > a and b < b+
b+1
a+1

(a−a). (13)

(ii) If a > b and the inequalities xn, k(a, b) < xn, k(a, b) for every n ¥N and
for each k, 1 [ k [ n, then

a < a and b > b+
b+1
a+1

(a−a). (14)

(iii) If a < b and the inequalities xn, k(a, b) < xn, k(a, b) hold for every
positive integer n and for each k, k=1, ..., n, then

a > a and b < b+a−a. (15)

(iv) If a < b and the inequalities xn, k(a, b) > xn, k(a, b) hold for every
positive integer n and for each k, k=1, ..., n, then

a < a and b > b+a−a. (16)

Thus, when (a, b) is outside the sectors described by (13), (14), (15), and (16),
then there simultaneously exist indices n, k and nŒ, kŒ for which the opposite
inequalitiesxn, k(a, b) < xn, k(a, b) and xnŒ, kŒ(a, b) > xnŒ, kŒ(a, b) hold.

The regions represented by the above inequalities are shown on Fig. 1. If
a > b, then sector (13) is the union of the sectors which contain the sign ‘‘<’’
and the point ‘‘1,’’ and sector (14) is the union of the sectors which contain the
sign ‘‘>’’ and the point ‘‘2.’’ Similarly, when the point (a, b) is above the line
a=b, then the sector (15) is the union of the sectors which contain the sign ‘‘<’’
and the point ‘‘3,’’ and the sector (16) is the union of the sectors containing the
sign ‘‘>’’ and the point ‘‘4.’’
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FIG. 1. Sectors in the (a, b) plane where the inequalities of Corollary 3.1 hold.

The last statement says that, when (a, b) is in the ‘‘white’’ regions, i.e.,
when (a, b) is at some of the positions indicated by primes in the figure, both
the opposite inequalities xn, k(a, b) < xn, k(a, b) and xnŒ, kŒ(a, b) >xnŒ, kŒ(a, b)
hold.
It is well known that P(a, b)n (x)=(−1)n P(b, a)n (x). This yields

xn, k(a, b)=−xn, n+1−k(b, a)

which itself implies:

Lemma 3.1. Let n ¥N. Then xn, k(a, b) < xn, k(a, b) for every k, 1 [ k [ n,
if and only if xn, k(b, a) > xn, k(b, a) for every k, 1 [ k [ n.
Thus, the inequalities xn, k(a, b) < xn, k(a, b) hold for every n ¥N and each k,
1 [ k [ n if and only if xn, k(b, a) > xn, k(b, a) every n ¥N and each k,
1 [ k [ n.

Proof of Theorem 1.2. Bearing in mind the statement of Corollary 3.1, all
we need to prove is that, when (a, b) is in one of the ‘‘extra’’ sectors which
contain the points 1, 2, 3, and 4 on the figure, either xn, k(a, b) <xn, k(a, b) or
xn, k(a, b) > xn, k(a, b) fails. This is easily done by the last statement of
Corollary 3.1 and by Lemma 3.1.
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Indeed, let (a1, b1) be at position 1 on the figure. Let (a1Œ, b1Œ)=(b1, a1).
Then (a1Œ, b1Œ) is at position 1Œ. On the other hand, if xn, k(a1, b1) <
xn, k(a, b) for all admissible indices n and k, then, by Lemma 3.1, the
inequalities xn, k(a1Œ, b1Œ) > xn, k(b, a) must also hold for all n ¥N and k,
1 [ k [ n. However, since 1Œ is in one of the white regions with respect to
(b, a), by the last statement of the corollary, at least one of these inequalities
must fail. We arrived at a contradiction.
Similarly, if we suppose that (a, b) is one of the positions 2, 3, or 4, and
the corresponding inequalities for the zeros hold for all the pairs of indices,
we shall arrive at a contradiction because the corresponding points 2Œ, 3Œ, or
4Œ are in white sectors.
Therefore:

1. In none of the extra sectors which contain the points 1 and 3, there
exist points (a, b) for which xn, k(a, b) < xn, k(a, b) for all the indices n and k.
2. In none of the extra sectors which contain the points 2 and 4, there

exist points (a, b) for which xn, k(a, b) > xn, k(a, b) for all the indices n and k.

Proof of Theorem 1.3. We consider first the even case. It follows imme-
diately from the first formula (4.7.30) in [18] that the zeros of the polyno-
mial

gn(x; l)=2F1(−n, n+l ; 1/2; x)

are x22n, k(l). In other words, they coincide with the squares of the positive
zeros of Cl2n(x). Hence, for any nonvanishing function f2n(l) the zeros of

Gn(x; l)=gn(−x/f
2
2n(l); l)

=C
n

j=0

1n
j
2 (n+l)j
(1/2)j

1
f2j2n(l)

xj

are −(f2n(l) x2n, k(l))2, k=1, ..., n. Thus the products f2n(l) x2n, k(l) are
increasing functions of l if and only if, for any sufficiently small positive e,
the polynomials Gn(x; l) and Gn(x; l+e) form a positive pair. This is
evidently equivalent to the fact that G̃n(x; l+e) and G̃n(x; l) form a positive
pair, where G̃n(x; l) denotes the reciprocal of Gn(x; l). Let H̃(C2n; l, e) be
the Hurwitz matrix associated with the polynomial

G̃n(x2 ; l+e)+xG̃n(x2 ; l).
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We have

H̃(C2n; l, e)=R
1 1n
1
2 (n+l+e)1
(1/2)1 f

2
2n(l+e)
1n
2
2 (n+l+e)2
(1/2)2 f

4
2n(l+e)

· · · 0

1 1n
1
2 (n+l)1
(1/2)1 f

2
2n(l)
1n
2
2 (n+l)2
(1/2)2 f

4
2n(l)

· · · 0

0 1 1n
1
2 (n+l+e)1
(1/2)1 f

2
2n(l+e)

· · · 0

0 1 1n
1
2 (n+l)1
(1/2)1 f

2
2n(l)

· · · 0

· · · · · · ·

S.
Theorem 2.1(ii) implies that the products f2n(l) x2n, k(l), k=1, ..., n, are
increasing functions of l if and only if all the principal minors D̃j(C2n; l, e),
j=1, ..., 2n+1, of H̃(C2n; l, e) are positive for every sufficiently small posi-
tive e. Observe that D̃2(C2n; l, e) is positive if and only if

1
f22n(l)

f22n(l+e)−f
2
2n(l)

e
>
1
l+n

.

Letting e tend to zero and having in mind that f2n(l) is positive we conclude
that this inequality is equivalent to (5).
Let us restrict our further considerations to the functions of the form
f2n(l)=(l+c2n)1/2; then (5) yields c2n < n. Thus f

2
2n(l)=l+n+d with

d=d2n < 0. The Gauss elimination process yields

D̃3(C2n ; l, e)=
(n−1)(n+l+e)(n+1+l+e)

3(n+l+e+d)2

+
2n(n+l)(n+l+e)

(n+l+d)(n+l+e+d)

−
(n−1)(n+l)(n+1+l)

3(n+l+d)2

−
2n(n+l+e)2

(n+l+e+d)2

=
−e{Ae(n, d) l2+Be(n, d) l+Ce(n, d)}

3(n+l+d)2 (n+l+e+d)2
.
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Since the latter denominator is positive and e is positive, then D̃3(C2n; l, e) is
positive for large values of l only when the leading coefficient Ae(n, d)=
2d(2n+1)+n−1 of the above binomial is negative. This yields (7).
The proofs of the statements concerning f2n+1(l) are done in a similar way.
Since, by the second formula (4.7.10) in [18], the zeros of the polynomial

hn(x; l)=2F1(−n, n+l+1; 3/2; x)

are x22n+1, k(l), then the zeros of

Hn(x; l)=hn(−x/f
2
2n+1(l); l)

=C
n

j=0

1n
j
2 (n+l+1)j
(3/2)j

1
f2j2n+1(l)

xj

are −(f2n+1(l) x2n+1, k(l))2, k=1, ..., n. Therefore the products f2n+1(l)
x2n+1, k(l) are increasing functions of l if and only if all the principal minors
D̃j(C2n+1 ; l, e) of

H̃(C2n+1 ; l, e)

=R
1 1n

1
2 (n+l+e+1)1
(3/2)1 f

2
2n+1(l+e)

1n
2
2 (n+l+e+1)2
(3/2)2 f

4
2n+1(l+e)

· · · 0

1 1n
1
2 (n+l+1)1
(3/2)1 f

2
2n+1(l)

1n
2
2 (n+l+1)2
(3/2)2 f

4
2n+1(l)

· · · 0

0 1 1n
1
2 (n+l+e+1)1
(1/2)1 f

2
2n+1(l+e)

· · · 0

0 1 1n
1
2 (n+l+1)1
(3/2)1 f

2
2n+1(l)

· · · 0

· · · · · · ·

S
are positive for any sufficiently small positive e. Then D̃2(C2n+1 ; l, e) is posi-
tive if and only if

1
f22n+1(l)

f22n+1(l+e)−f
2
2n+1(l)

e
>

1
l+n+1

,

and this is equivalent to (6). In what follows we concentrate on multipliers of
the form f2n+1(l)=(l+c2n+1)1/2. In this case (6) yields c2n+1 < n+1. Let
c2n+1 < n+d with d=d2n+1 < 1. Again lengthy but straightforward calcula-
tions show that

D̃3(C2n+1 ; l, e)=
−e{Ao(n, d) l2+Bo(n, d) l+Co(n, d)}

15(n+l+d)2 (n+l+e+d)2
,
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where Ao(n, d)=2(2n+3) d−(n+9). As in the previous case we conclude
that D̃3(C2n+1 ; l, e) can be positive for large values of l only when
Ao(n, d) < 0 and this implies (8).
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